Growth Arrest and DNA-damage-inducible Protein 45β-mediated DNA Demethylation of Voltage-dependent T-type Calcium Channel 3.2 Subunit Enhances Neuropathic Allodynia after Nerve Injury in Rats.
نویسندگان
چکیده
BACKGROUND Growth arrest and DNA-damage-inducible protein 45β reactivates methylation-silenced neural plasticity-associated genes through DNA demethylation. However, growth arrest and DNA-damage-inducible protein 45β-dependent demethylation contributes to neuropathic allodynia-associated spinal plasticity remains unclear. METHODS Adult male Sprague-Dawley rats (654 out of 659) received a spinal nerve ligation or a sham operation with or without intrathecal application of one of the following: growth arrest and DNA-damage-inducible protein 45β messenger RNA-targeted small interfering RNA, lentiviral vector expressing growth arrest and DNA-damage-inducible protein 45β, Ro 25-6981 (an NR2B-bearing N-methyl-D-aspartate receptor antagonist), or KN-93 (a calmodulin-dependent protein kinase II antagonist) were used for behavioral measurements, Western blotting, immunofluorescence, dot blots, detection of unmodified cytosine enrichment at cytosine-phosphate-guanine site, chromatin immunoprecipitation quantitative polymerase chain reaction analysis, and slice recordings. RESULTS Nerve ligation-enhanced growth arrest and DNA-damage-inducible protein 45β expression (n = 6) in ipsilateral dorsal horn neurons accompanied with behavioral allodynia (n = 7). Focal knockdown of growth arrest and DNA-damage-inducible protein 45β expression attenuated ligation-induced allodynia (n = 7) by reducing the binding of growth arrest and DNA-damage-inducible protein 45β to the voltage-dependent T-type calcium channel 3.2 subunit promoter (n = 6) that decreased expression of and current mediated by the voltage-dependent T-type calcium channel 3.2 subunit (both n = 6). In addition, NR2B-bearing N-methyl-D-aspartate receptors and calmodulin-dependent protein kinase II act in an upstream cascade to increase growth arrest and DNA-damage-inducible protein 45β expression, hence enhancing demethylation at the voltage-dependent T-type calcium channel 3.2 subunit promoter and up-regulating voltage-dependent T-type calcium channel 3.2 subunit expression. Intrathecal administration of Ro 25-6981, KN-93, or a growth arrest and DNA-damage-inducible protein 45β-targeting small interfering RNA (n = 6) reversed the ligation-induced enrichment of unmodified cytosine at the voltage-dependent T-type calcium channel 3.2 subunit promoter by increasing the associated 5-formylcytosine and 5-carboxylcytosine levels. CONCLUSIONS By converting 5-formylcytosine or 5-carboxylcytosine to unmodified cytosine, the NR2B-bearing N-methyl-D-aspartate receptor, calmodulin-dependent protein kinase II, or growth arrest and DNA-damage-inducible protein 45β pathway facilitates voltage-dependent T-type calcium channel 3.2 subunit gene demethylation to mediate neuropathic allodynia.
منابع مشابه
Upregulation of Dorsal Root Ganglion a2d Calcium Channel Subunit and Its Correlation with Allodynia in Spinal Nerve-Injured Rats
Peripheral nerve injury can lead to a persistent neuropathic pain state in which innocuous tactile stimulation elicits pain behavior (tactile allodynia). Spinal administration of the anticonvulsant gabapentin suppresses allodynia by an unknown mechanism. In vitro studies indicate that gabapentin binds to the a2d-1 (hereafter referred to as a2d) subunit of voltage-gated calcium channels. We hypo...
متن کاملInjury discharges regulate calcium channel alpha-2-delta-1 subunit upregulation in the dorsal horn that contributes to initiation of neuropathic pain.
Previous studies have shown that peripheral nerve injury in rats induces increased expression of the voltage gated calcium channel (VGCC) alpha-2-delta-1 subunit (Ca v alpha2 delta1) in spinal dorsal horn and sensory neurons in dorsal root ganglia (DRG) that correlates to established neuropathic pain states. To determine if injury discharges trigger Ca v alpha2 delta1 induction that contributes...
متن کاملProtective Effects of Gabapentin on Allodynia and α2δ1-Subunit of Voltage-dependent Calcium Channel in Spinal Nerve-Ligated Rats
This study was designed to determine whether early gabapentin treatment has a protective analgesic effect on neuropathic pain and compared its effect to the late treatment in a rat neuropathic model, and as the potential mechanism of protective action, the alpha(2)delta(1)-subunit of the voltage-dependent calcium channel (alpha(2)delta(1)-subunit) was evaluated in both sides of the L5 dorsal ro...
متن کاملNeurobiology of Disease Spinal Dorsal Horn Calcium Channel 2 -1 Subunit Upregulation Contributes to Peripheral Nerve Injury- Induced Tactile Allodynia
Peripheral nerve injury induces upregulation of the calcium channel 2 -1 structural subunit in dorsal root ganglia (DRG) and dorsal spinal cord of spinal nerve-ligated rats with neuropathic pain, suggesting a role of the calcium channel 2 -1 subunit in central sensitization. To investigate whether spinal dorsal horn 2 -1 subunit upregulation derives from increased DRG 2 -1 subunit and plays a c...
متن کاملP169: The Role of Lymphocytes in Spinal Cord Injury and Pain; T Helper Cells (TH1 and TH2 Cells)
Lymphocyte is one of the subtypes of white blood cell (WBC) in immune system. Lymphocytes contain T cells, natural killer cells , and B cells. They are the head type of cell found in lymph, which for this reason the name "lymphocyte". Lymphocytes can be recognized by their large nucleus. Infiltration of immune cells in the central nervous system (CNS) helps the start of chronic pain. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 126 6 شماره
صفحات -
تاریخ انتشار 2017